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Resolution in Programmed Temperature Gas
Chromatography
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UNIVERSITY OF CALIFORNIA
DAVIS, CALIFORNIA 95616

Abstract

Expressions for first, second, and third moments are developed for a simple
model of gas-liquid partition chromatography with linear temperature pro-
gramming. The results show how increased heating rate causes increased
sharpening of output peaks, even though resolution is decreased. Second and
third central moments are nearly inversely proportional to heating rate,

Programmed temperature gas chromatography (PTGC) allows separa-
tion of a wide boiling point range of solutes in a shorter time than can be
realized with isothermal operation (/). The column temperature, uniform
along the entire length, is increased with time so that the more volatile
solutes are eluted at low temperatures and the heavier solutes at higher
temperatures. A linear increase of temperature during a run leads to the
elution of uniformly spaced peaks in a homologous series such that the
plot of retention time versus number of carbon atoms is nearly linear
(2). With isothermal operation, on the other hand, the retention time
increases nearly exponentially with the number of carbon atoms, so that
the separation of the more volatile fractions is larger than necessary at
the temperature that separates the heavier fractions. With PTGC each
solute is eluted at a temperature near the optimum temperature for that
fraction alone (3).
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Although the difference in retention times (4), or first moments, is the
main consideration in optimizing resolution in PTGC, the widths, or sec-
ond moments, of the output pulses are of interest as well. The present work
reproduces the well-known results for first moments (/-3), but extension
to higher moments requires a reexamination and reworking of the founda-
tions of the theory. In this paper we derive relationships for the second
and third central moments, u, and p;, in PTGC, and show how band
spreading and skewness depend on the rate of temperature change and on
enthalpy difference between gas and liquid. The major result is that u,
and u; are nearly inversely proportional to heating rate. In spite of the
sharpening effect of PTGC, resolution decreases with heating rate because
of the decrease in retention time.

The method that implements these results is the moment technique.
The results are developed for a simple model of gas-liquid partition
chromatography (5) that ignores details of intraparticle and liquid diffu-
sion. Although the analytical solutions are restricted in application by the
assumptions of the model, the method could be used with numerical
integration to achieve a more accurate representation of real chroma-
tographic processes. The basic ideas also have potential for application to
other programming and gradient procedures in separation processes.

INTEGRATION OF MOMENTS

The temperature of the column is uniform and increasing with time,
T(t), so that in general equilibrium coefficients, rate parameters, mass
transfer coefficients, and intraparticle and axial dispersion coefficients
are functions of time. The time-moment expressions are in the form that
the difference of a moment at two different locations in a column, Ay,
is proportional to the distance between these points, Az.

For the normalized first moment, defined as

1 o]
K@) = | et M)
My Jo
with the zeroth unnormalized moment

my = r cdt Q)

0

we may write
Ay = f(1)Az 3)



14: 02 25 January 2011

Downl oaded At:

PROGRAMMED TEMPERATURE GAS CHROMATOGRAPHY 517

We have assumed in Eq. (3) that the time for the peak to traverse the dis-
tance Az is short enough that the temperature has not changed significantly.
The form that f(¢) takes will depend on the particular model adopted to
describe the geometry and equilibrium behavior in the column. Since the
first moment locates the average time position of the peak, Ay represents
how long it takes for the peak to move the distance Az. For an infinitesi-
mally small distance, Az — dz, we let Ay — dt; therefore from Eq. (3)
we have

dz = dijf(t) 4)

This expression may be integrated between the entrance, z = 0, and exit,
z = L, of a column of length L. We may choose ¢ = 0 as the time when
the peak enters the column; thus g} (z = 0) = 0. The integration of Eq.
(4) yields

w1’ (L)
L= j " duree ®)

where p}(L) may be identified as the retention time. Equation (5) has the
same general form as other equations in the PTGC literature (/-3) relating
column length to retention time. If the temperature is constant, then f(¢)
is constant and may be removed from under the integral to give a familiar
equation similar to Eq. (3) with L replacing Az.

The normalized second central moment, defined as

o0

1
Ha(2) = E-,[ (t — uc(z, 1) dt ©®
0Jo
changes over the small distance Az according to

Ap, = g(H)Az Q)

where g(¢) depends upon the transport processes, as well as geometry and
equilibrium behavior, in the column. In the differential limit we have

d, d,
22 r) = 90 ®

Integration between the values of moments at either end of the column
yields

'u1’(L)
(L) — 13(0) = L dt g (1) ©

which is a measure of band spreading between the column inlet and outlet.
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The normalized third central moment, which is a measure of band
skewness, is defined as

1 0
i@ = o | = e a (10)
0J0
and changes proportionally with the distance Az,
Aus = h(t)Az (11)
Again we have
dus
=L21(1) = o) (12)
so that
1’ (L)
i@ = s = [ denoyro (13)

The definite proportionality between moments and column length
exhibited by Egs. (3), (7), and (11) is known to hold for the adsorption
model of Kubin (6), as well as the model examined in the present paper.
This proportionality, which holds at least for the first and second moments
for some other models (7, 8), is a consequence of the reversible nature of
the transport and reaction phenomena that take place in the column.

MODEL FOR GAS-LIQUID PARTITION CHROMATOGRAPHY

The model we propose for concrete investigation of the magnitude of
the effect on chromatographic peaks of temperature programming applies
to gas-liquid partition chromatography (5, 9). The model includes the
equilibrium distribution constant and the axial dispersion coefficient, but
neglects intraparticle diffusion. In terms of the column void fraction «,
the average gas velocity vy, and the axial dispersion coefficient Dy, we
have the differential equation for the space and time dependence of the
concentration of solute ¢(z, ¢):

a(l + k)dc/ot + vydc/oz — Dyd*c/0z® = 0 (14)
Here k is the partition ratio, which may be written as
k = Kip (15)

in terms of K = ¢;/c, the equilibrium partition coefficient, and f, the ratio
of volume of gas to volume of liquid in the column. The initial and
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boundary conditions take the form

c(z,t=0)=0 (16)
c(z=0,1) = ¢y(t) an
¢(z— 0, t) = finite (18)

The moments for this system may be calculated from the solution of
Egs. (14) to (18) in the Laplace domain which is

c(z) = ¢y exp (Az2) (19)

where

v
A=52[1 — (1 + 4aDys/vy?)!?] (20)
2D,
where s is the Laplace transform parameter. Using the identity relating
the unnormalized moments to the Laplace transform of concentration,
m, = lim (~ 1)"d"¢/ds" 21
s~0

we readily calculate the moments (9) according to Eqgs. (3), (7), and (11):

J(#) = a(l + K)fvo (22)
g(2) = 2Dox*(1 + k)?[v,? (23)
h(t) = 12Dy%e3(1 + k)3/vy® (24)
The temperature dependence of the partition ratio is given by
k = k, exp (—AG/RT) (25)

and since the standard free energy change from the gas to the liquid
(AG < 0) has the temperature dependence

AG = AH — TAS 26
therefore we may write
k = kyexp (—AHJRT) 7

where k, = k, exp (AS/R). We assume that the enthalpy and entropy
change from gas to liquid, AH and AS, are independent of T.

For a satisfactory chromatographic separation, the partition ratio k
cannot be too small. If k is negligible compared to unity, we see from the
governing differential Eq. (14) that there is no mechanism for resolving
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solutes except for possible slight differences in axial dispersion. Thus we
are not entirely unjustified in restricting the subsequent calculations to
the case k& » 1; otherwise we would not be able to obtain analytical
expressions for moments in PTGC. Giddings (2) makes the same approxi-
mation in writing his Eq. (6). The approximation is equivalent to ignoring
the dead space, an assumption discussed by Harris and Habgood (7).

LINEAR PROGRAMMED TEMPERATURE

Our objective is to obtain analytical expressions for the moments
wi(D), po(L), and ps(L). Following earlier work (2) we assume that gas
expansion and pressure drop in the column are negligible, so that average
velocity v, is constant. When temperature is programmed to increase
linearly with time, we write

T(t) =T, + ¢t (28)
where T, is the starting temperature. The integrations in the moment
expressions can be performed analytically when k » 1 or when eu’(L)/
T, « 1. The latter inequality, which would apply for small temperature

gradients and short retention times, is of less interest and is not considered

further.
Combining (5), (22), and k >» 1, we obtain

p1'(L) Tr
L= AHIRT g . D0 | AHIRT gy (29)
ako 0 Eako To

where we have substituted the retention temperature
T = To + epy(L) (30)
Integrating by parts, we find

o Yo AH
" eaky R Fy )
where
e Xo  oXr
F, = DA A E\(Xo) + Ei(Xp) (32)

which is equivalent to well-known results (/-3). Here we define X =
—AH|/RTg > 0, Xy = —AH/RT, > 0, and we use the following nota-
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tion for the exponential integral (10),

w ,—t
—Ei(—x) = Ey(x) = j erz, for x >0 (33)
Combining Eqs. (9) and (23) and integrating, we have for the second
moment with k » 1,

e AHIRT gy (34)

2Dqak, (7=
ua(L) — uy(0) = - ) oj

81)0 To

We have assumed D, to be independent of T, temperature; i.e., that the
temperature dependence of the axial dispersion coefficient is much weaker
than that of the partition ratio 4. The integrand in Eq. (34) is the same as
in Eq. (29) except that AH is replaced with —AH. Thus using the relation
(33) between the two exponential integrals, we find

oD = 1a0) = R (35)
where
o fr .
F, = 7(;— a7 Ei(X,) + Ei(Xp) (36)

We can test the approximation that Dy(7T) has a relatively small effect
on Au,. A significant part of the temperature dependence of the axial
dispersion coefficient Do(T) will be due to the contribution of the gas
diffusion coefficient D,5(7"), which increases with T as the 1.7 or 1.8
power (/). However, the convective, or eddy, contribution to Dy(T) will
also have an effect. For our purposes it will suffice to consider Dy(T)
increasing as the first or second power.

If

Do = 61T (37)
then we have instead of Eq. (34)
208,k j Tr
2

eve® U1
208 ko (AH\? (X% X
T ey’ (T) X X° dx

2 (1)
=2a51ko<AH> F, 9

Ve \ R/ ¢

Ay, = Te AHIRT gT
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where
F,( = —¢¥o —1—+L + &= —1—+L + Ei(X,) — Ei(Xg)
z Xo® ' X, Xt Xx 0 R
(39

The integral in Eq. (39) may be developed by integration by parts, or simply
by using a suitable table of integrals (/7).

If
Dy = 8,T? (40)
then by the same procedure
06%ky ([AH\? F,®
Ap, = W(T> o (41

where

2 1 1 2 1 1
(2 _ _ pXo S - Xr{ — I
B = e <X03+X02+X0> e <XR3+XR2+XR>
+ Ei(X,) — Ei(Xg) (42)

Combining Egs. (13) and (24) and integrating, we have for the third
moment with £ > 1,

u3(L) — ua(0) = 7 e” 2MHIRT gT (43)

12D, %a%k,? [T®
Vo

To

Since the integrand is the same as in Eq. (36) except that AH is replaced
with 2AH, we have

24Dy*0*ko* AH F,

ua(L) — p3(0) = 004 R ¢ (44)
where
eZXo eZXR

RESULTS AND DISCUSSIONS

It is necessary to calculate the quantities F,, F,, F,', F,*), and F;
for various retention temperatures to estimate the relative effect of tem-
perature programming on the moments. Such calculations are shown
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TABLE 1

Calculations Showing Effect of Retention Temperature on Moments
Xr F, F F, JAC —F;
0.1 7.225 302.0 192.3 2359 1.362 x 10°
0.2 2.871 296.3 106.6 367.9 1.362 x 10°
0.5 6.533 x 10! 292.2 78.53 60.85 1.362 x 106
1.0 1.485 x 10! 290.2 72.63 34.01 1,362 x 10°
2.0 1.877 x 10-2 288.1 69.68 27.47 1.362 x 10°
5.0 1.992 x 10-4 278.9 64.52 22.84 1.361 x 108
6.0 5.264 x 10~5 270.6 61.54 21.23 1.360 x 10
7.0 1.439 x 10-3 254.5 56.63 18.97  1.354 x 10¢
8.0 3.880 x 10-¢ 221.6 47.89 1548 1.32 x 10°
9.0 8.792 x 10-7 151.8 31.57 9.747 1.14 x 10°
10.0 0 0 0 0 0

in Table 1 for X, = 10, which corresponds to T, = 300°K and AH =
— 6000 cal/mole. Qualitative conclusions are not affected by changing X,
within realistic limits. Values for exponential integrals come from tabula-
tions in Ref. /0. Note that the case X; = X, = 10 in Table 1 refers to a
zero-length column where pi(L) = 0; to recover the steady temperature
moments, where ¢ = 0, one can apply 'Hospital’s rule to Egs. (31), (35),
and (44).

The results for F, in Table 1 merely reproduce results already known
(2). The interesting new information in Table 1 is the relative constancy of
F, and F;. This implies that Ay, and Ay, are nearly inversely proportional
to ¢, see Egs. (35) and (44), so that band spreading and skewness are
reduced for larger heating rate. This is illustrated by Fig. 1 where the
moments are plotted. If the inlet mixture is a very thin pulse, then we may
approximate it with a delta function at time zero, so that Ay}, Au,, and
Auy may be replaced with ui, p,, and p;. We have assumed for Fig. 1
that « = 0.4, L = 400 cm, v, = 8 cm/sec, D, = 0.1 cm?/sec, k, = 0.01,
AH, = —10,000 cal/mole and AHy = —6,000 cal/mole. The calculations
for second and third central moments are performed by finding Ty at the
given value of ¢ [e.g., by using a graph similar to Giddings’ (2) Fig. 3],
computing X from Ty, using Table 1 or its graph to get F, and F,, and
then using Eqs. (35) and (38) to calculate Ay, and Au;. The first moment
iy is simply (T — Ty)/e. The values at ¢ = 0 are calculated from Egs.
(7) and (11), with Az replaced by L; this procedure is a consequence of the
application of I"'Hospital’s rule to Eqs. (31), (35), and (44).

The effect of the temperature dependence was estimated by setting
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Moments

1.0 1 1 i
0 0.2 04 0.6 0.8 1.0

€, °K/sec, Heating Rate

Fic. 1. Effect of heating rate ¢ on first, second, and third moments of com-
ponents A and B, AH, = —10,000 cal/mole and AHy = —6.000 cal/mole.

D, = 0.1 cm?/sec for T, = 300°K and calculating §, = 3.33 x 10™*
cm?/sec’K and 8, = 1.11 x 107° cm?/sec°K?. Values of F,¥) and F,®
were interpolated graphically for AHy = — 6,000 cal/mole to get values of
Ap,p which are plotted in Fig. 2. The increase in Au,p at ¢ = 1.0 was 159
for D, oc T and 36%, for Dy oc T?. The percent increase was less for
smaller values of ¢, and was, of course, zero where ¢ = 0. This increase of
Ay, is small enough that it is not plotted in Fig. 1.

The sharpening of the pulse by increased heating rate can be qualitatively
explained as follows. For higher heating rates the retention time of each
peak is reduced. Therefore absorption, which is the main broadening
effect, has less time to act. In addition, at higher temperatures, absorp-



14: 02 25 January 2011

Downl oaded At:

PROGRAMMED TEMPERATURE GAS CHROMATOGRAPHY 525

Mm;az,ucz

€, °K/sec, Heating Rate

F1G. 2. Influence of temperature dependence of the axial dispersion coefficient
D, on plot of second moment x5 versus heating rate ¢,

tion is reduced because of the temperature dependence of the equilibrium
partition coefficient. However, resolution is not increased for larger ¢
despite the band sharpening, because spacing between first moments is
decreased.

To illustrate this behavior, we plot resolution (7), defined in terms of
moiments as

Kia — His
§ NI \/ﬂzn ¢

versus heating rate in Fig. 3. The resolution is entirely satisfactory even at
¢ = 1.0, and a large reduction in retention time is achieved. These results
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FiG. 3. Effect of heating rate ¢ on resolution of components A and B,

are obviously conditional on the large difference in AH for Components
A and B that was chosen for this calculation.

CONCLUSION

The key to this paper’s development of a theory for band broadening
and skewness is the realization of the differential expressions for the
moments, Egs. (4), (8), and (12). The integration of the first moment
reproduces well-known results. The second moment shows how pulse
sharpening occurs for larger heating rates. The decrease in the third
moment shows how the peak becomes more symmetric as it narrows.
Using the first and second moment results, we are able to demonstrate how
resolution decreases with increased heating rate, although retention time
is reduced. The temperature dependence of the axial dispersion coefficient
can be included and is a secondary effect.
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