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Moment Theory of Band Spreading, Skewness, and 
Resolution in Programmed Temperature Gas 
Chromatography 

B. J. McCOY 
DEPARTMENT OF CHEMICAL ENGINEERING 
UNIVERSITY OF CALIFORNIA 

DAVIS, CALIFORNIA 95616 

Abstract 
Expressions for first, second, and third moments are developed for a simple 

model of gas-liquid partition chromatography with linear temperature pro- 
gramming. The results show how increased heating rate causes increased 
sharpening of output peaks, even though resolution is decreased. Second and 
third central moments are nearly inversely proportional to heating rate. 

Programmed temperature gas chromatography (PTGC) allows separa- 
tion of a wide boiling point range of solutes in a shorter time than can be 
realized with isothermal operation (1). The column temperature, uniform 
along the entire length, is increased with time so that the more volatile 
solutes are eluted at low temperatures and the heavier solutes at higher 
temperatures. A linear increase of temperature during a run leads to the 
elution of uniformly spaced peaks in a homologous series such that the 
plot of retention time versus number of carbon atoms is nearly linear 
(2). With isothermal operation, on the other hand, the retention time 
increases nearly exponentially with the number of carbon atoms, SO that 
the separation of the more volatile fractions is larger than necessary at 
the temperature that separates the heavier fractions. With PTGC each 
solute is eluted at a temperature near the optimum temperature for that 
fraction alone (3). 

515 

Copyright 0 1979 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor 
any part may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, microfilming, and recording, or by any informa- 
tion storage and retrieval system, without permission in writing from the publisher. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



516 McCOY 

Although the difference in retention times (4),  or first moments, is the 
main consideration in optimizing resolution in PTGC, the widths, or sec- 
ond moments, of the output pulses are of interest as well. The present work 
reproduces the well-known results for first moments (1-3), but extension 
to higher moments requires a reexamination and reworking of the founda- 
tions of the theory. In this paper we derive relationships for the second 
and third central moments, p 2  and p 3 ,  in PTGC, and show how band 
spreading and skewness depend on the rate of temperature change and on 
enthalpy difference between gas and liquid. The major result is that p 2  
and p 3  are nearly inversely proportional to heating rate. In spite of the 
sharpening effect of PTGC, resolution decreases with heating rate because 
of the decrease in retention time. 

The method that implements these results is the moment technique. 
The results are developed for a simple model of gas-liquid partition 
chromatography (5) that ignores details of intraparticle and liquid diffu- 
sion. Although the analytical solutions are restricted in application by the 
assumptions of the model, the method could be used with numerical 
integration to achieve a more accurate representation of real chroma- 
tographic processes. The basic ideas also have potential for application to 
other programming and gradient procedures in separation processes. 

INTEGRATION O F  MOMENTS 

The temperature of the column is uniform and increasing with time, 
T(t ), so that in general equilibrium coefficients, rate parameters, mass 
transfer coefficients, and intraparticle and axial dispersion coefficients 
are functions of time. The time-moment expressions are in the form that 
the difference of a moment at two different locations in a column, Afi, 
is proportional to the distance between these points, Az. 

For the normalized first moment, defined as 

1 r m  

fi;(z) = J ~ ( t ,  z)t dt 
mo 0 

with the zeroth unnormalized moment 
m 

mo = s  cdt  
0 

we may write 

Ap; = f ( t ) A z  
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We have assumed in Eq. (3) that the time for the peak to traverse the dis- 
tance Az is short enough that the temperature has not changed significantly. 
The form that f ( t )  takes will depend on the particular model adopted to 
describe the geometry and equilibrium behavior in the column. Since the 
first moment locates the average time position of the peak, A& represents 
how long it takes for the peak to move the distance Az.  For an infinitesi- 
mally small distance, Az -+ dz, we let Api -+ dt; therefore from Eq. (3) 
we have 

dz = dt/ f ( t )  (4) 

This expression may be integrated between the entrance, z = 0, and exit, 
z = L, of a column of length L. We may choose t = 0 as the time when 
the peak enters the column; thus pi ( z  = 0) = 0. The integration of Eq. 
(4) yields 

Pl'(L) 

L = J d ~ ( t )  ( 5 )  
0 

where pL;(L) may be identified as the retention time. Equation (5) has the 
same general form as other equations in the PTGC literature (1-3) relating 
column length to retention time. If the temperature is constant, thenf(t) 
is constant and may be removed from under the integral to give a familiar 
equation similar to Eq. (3) with L replacing Az. 

The normalized second central moment, defined as 

changes over the small distance Az according to 

A P 2  = g w z  (7) 

where g ( t )  depends upon the transport processes, as well as geometry and 
equilibrium behavior, in the column. In the differential limit we have 

Integration between the values of moments at either end of the column 
yields 

a1'G) 

0 
PdL) - P m  = 1 dts(t) l f( t)  (9) 

which is a measure of band spreading between the column inlet and outlet. 
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The normalized third central moment, which is a measure of band 
skewness, is defined as 

I r m  

and changes proportionally with the distance Az, 

Again we have 

so that 

The definite proportionality between moments and column length 
exhibited by Eqs. (3), (7), and (11) is known to hold for the adsorption 
model of Kubin (6), as well as the model examined in the present paper. 
This proportionality, which holds at least for the first and second moments 
for some other models (7, S), is a consequence of the reversible nature of 
the transport and reaction phenomena that take place in the column. 

MODEL FOR GAS-LIQUID PARTITION CHROMATOGRAPHY 

The model we propose for concrete investigation of the magnitude of 
the effect on chromatographic peaks of temperature programming applies 
to gas-liquid partition chromatography (5 ,9) .  The model includes the 
equilibrium distribution constant and the axial dispersion coefficient, but 
neglects intraparticle diffusion. In terms of the column void fraction a, 
the average gas velocity vo, and the axial dispersion coefficient Do, we 
have the differential equation for the space and time dependence of the 
concentration of solute c(z, t ) :  

a(1 + k)dc/at + u ~ ~ c / ~ z  - D o d 2 ~ / L J ~ z  = 0 (14) 

k = K/p (15) 

Here k is the partition ratio, which may be written as 

in terms of K = cliq/c, the equilibrium partition coefficient, and p, the ratio 
of volume of gas to volume of liquid in the column. The initial and 
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boundary conditions take the form 

c(z, t = 0) = 0 (16) 
C(Z = 0, t )  = co(t) (1 7) 

c(z+oo, t )  = finite (18) 
The moments for this system may be calculated from the solution of 

Eqs. (14) to (18) in the Laplace domain which is 

C(z) = E0 exp (Iz)  (19) 
where 

V O  I = -[1- 
200  

where s is the Laplace transform parameter. Using the identity relating 
the unnormalized moments to the Laplace transform of concentration, 

m, = lim (- 1)” d”C/ds” (21) 
S‘O 

we readily calculate the moments (9) according to Eqs. (3), (7), and (1 1): 

f ( t >  = 4 1  + W O  

g ( t )  = 2~ ,c r~ (1  + k)Z/uo3 

h( t )  = 1 2 ~ , ~ ~ ~ ~ ( 1  + k)31~,5 

k = k ,  exp (- AG/RT)  

(22) 

(23) 

(24) 

(25) 

The temperature dependence of the partition ratio is given by 

and since the standard free energy change from the gas to the liquid 
(AG < 0) has the temperature dependence 

AG = AH - TAS (26) 

therefore we may write 

k = k,  exp (- A H / R T )  

where k,  = k ,  exp (ASIR). We assume that the enthalpy and entropy 
change from gas to liquid, AH and AS, are independent of T. 

For a satisfactory chromatographic separation, the partition ratio k 
cannot be too small. If k is negligible compared to unity, we see from the 
governing differential Eq. (14) that there is no mechanism for resolving 
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520 McCOY 

solutes except for possible slight differences in axial dispersion. Thus we 
are not entirely unjustified in restricting the subsequent calculations to 
the case k >> 1; otherwise we would not be able to obtain analytical 
expressions for moments in PTGC. Giddings (2) makes the same approxi- 
mation in writing his Eq. (6). The approximation is equivalent to ignoring 
the dead space, an assumption discussed by Harris and Habgood (1). 

L I N E A R  PROGRAMMED TEMPERATURE 

Our objective is to obtain analytical expressions for the moments 
p; (L ) ,  p2(L),  and p3(L).  Following earlier work (2) we assume that gas 
expansion and pressure drop in the column are negligible, so that average 
velocity uo is constant. When temperature is programmed to increase 
linearly with time, we write 

T ( t )  = To + E t  (28) 

where To is the starting temperature. The integrations in the moment 
expressions can be performed analytically when k >> I or when cp;(L)/  
To << 1. The latter inequality, which would apply for small temperature 
gradients and short retention times, is of less interest and is not considered 
further. 

Combining (5 ) ,  (22), and k >> 1, we obtain 

where we have substituted the retention temperature 

Integrating by parts, we find 

where 

which is equivalent to well-known results (2-3). Here we define XR = 
- AH/RTR > 0, Xo = - AH/RTo > 0, and we use the following nota- 
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PROGRAMMED TEMPERATURE GAS CHROMATOGRAPHY 52 I 

tion for the exponential integral (ZO), 

- E i ( - x )  = E,(x) = for x > 0 (33) 

Combining Eqs. (9) and (23) and integrating, we have for the second 
moment with k >> 1, 

We have assumed Do to be independent of To temperature; i.e., that the 
temperature dependence of the axial dispersion coefficient is much weaker 
than that of the partition ratio k. The integrand in Ey. (34) is the same as 
in Eq. (29) except that AH is replaced with -AH.  Thus using the relation 
(33) between the two exponential integrals, we find 

where 
ex, exR 

Ei(X0) + Ei(X,) (36) F - - _ _ _  
- x, XR 

We can test the approximation that Do(T) has a relatively small effect 
on A p 2 .  A significant part of the temperature dependence of the axial 
dispersion coefficient D,(T) will be due to the contribution of the gas 
diffusion coefficient DAB(T),  which increases with T as the 1.7 or 1.8 
power ( I ) .  However, the convective, or eddy, contribution to Do(T) will 
also have an effect. For our purposes it will suffice to consider D,(T) 
increasing as the first or second power. 

If 

Do = dlT (3 7) 

then we have instead of Eq. (34) 
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522 McCOY 

where 

The integral in Eq. (39) may be developed by integration by parts, or simply 
by using a suitable table of integrals (11). 

If 

Do = 6,T2 (40) 

then by the same procedure 

where 

+ Ei(X0) - Ei(XR) (42) 

Combining Eqs. (13) and (24) and integrating, we have for the third 
moment with k >> 1, 

Since the integrand is the same as in Eq. (36) except that A H  is replaced 
with 2AH, we have 

where 

RESULTS AND D I S C U S S I O N S  

It is necessary to calculate the quantities F,, F,, F2(’) ,  F2(’), and F3 
for various retention temperatures to estimate the relative effect of tem- 
perature programming on the moments. Such calculations are shown 
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TABLE 1 
Calculations Showing Effect of Retention Temperature on Moments 

0.1 7.225 302.0 192.3 
0.2 2.871 296.3 106.6 
0.5 6.533 x lo-’ 292.2 78.53 
1 .o 1.485 x lo-’ 290.2 72.63 
2.0 1.877 x lo-* 288.1 69.68 
5.0 1.992 X 278.9 64.52 
6.0 5.264 X 270.6 61.54 
7.0 1.439 X 254.5 56.63 
8.0 3.880 x 221.6 47.89 
9.0 8.792 x 151.8 31.57 

10.0 0 0 0 

2359 
367.9 
60.85 
34.01 
27.47 
22.84 
21.23 
18.97 
15.48 
9.747 
0 

~~ 

1.362 x lo6 
1.362 x lo6 
1.362 x lo6 
1.362 x lo6 
1.362 x lo6 
1.361 x lo6 
1.360 x lo6 
1.354 x lo6 
1.32 x lo6 
1.14 x lo6 
0 

in Table 1 for Xo = 10, which corresponds to To = 300°K and AH = 
- 6000 cal/mole. Qualitative conclusions are not affected by changing X o  
within realistic limits. Values for exponential integrals come from tabula- 
tions in Ref. 10. Note that the case X ,  = Xo = 10 in Table 1 refers to a 
zero-length column where p;(L) = 0; to recover the steady temperature 
moments, where E = 0, one can apply I’Hospital’s rule to Eqs. (31), ( 3 9 ,  
and (44). 

The results for F ,  in Table 1 merely reproduce results already known 
(2). The interesting new information in Table 1 is the relative constancy of 
F2 and F3.  This implies that Ap2 and Ap3 are nearly inversely proportional 
to E ,  see Eqs. (35) and (44), so that band spreading and skewness are 
reduced for larger heating rate. This is illustrated by Fig. 1 where the 
moments are plotted. If the inlet mixture is a very thin pulse, then we may 
approximate it with a delta function at time zero, so that A&, Ap2, and 
Ap3 may be replaced with p i ,  p2, and p3. We have assumed for Fig. 1 
that a = 0.4, L = 400 cm, vo = 8 cmlsec, Do = 0.1 cm2/sec, ko = 0.01, 
AHA = - 10,000 cal/mole and AHB = - 6,000 cal/moIe. The calculations 
for second and third central moments are performed by finding T R  at the 
given value of E [e.g., by using a graph similar to Giddings’ (2) Fig. 31, 
computing XR from T’, using Table 1 or its graph to get F2 and F3, and 
then using Eqs. (35) and (38) to calculate Ap2 and Ap3. The first moment 
pi is simply (TR - To)/&. The values at E = 0 are calculated from Eqs. 
(7) and (1 I), with Az replaced by L;  this procedure is a consequence of the 
application of 1’Hospital’s rule to Eqs. (31), ( 3 9 ,  and (44). 

The effect of the temperature dependence was estimated by setting 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



524 McCOY 
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FIG. 1 .  Effect of heating rate E on first, second, and third moments of com- 
ponents A and B, AH, = -10,OOO cal/mole and AH, = -6.000 cal/rnole. 

Do = 0.1 cm2/sec for To = 300°K and calculating 6, = 3.33 x 
cm2/secoK and 6, = 1.11 x cmz/secoK2. Values of Fzfi) and F2(2) 
were interpolated graphically for AHB = - 6,000 cal/mole to get values of 
Ap2B which are plotted in Fig. 2. The increase in ApLZB at E = 1.0 was 15 % 
for Do cc T and 36% for Do cc T 2 .  The percent increase was less for 
smaller values of E ,  and was, of course, zero where E = 0. This increase of 
Ap2 is small enough that it is not plotted in Fig. 1 .  

The sharpening of the pulse by increased heating rate can be qualitatively 
explained as follows. For higher heating rates the retention time of each 
peak is reduced. Therefore absorption, which is the main broadening 
effect, has less time to act. In addition, a t  higher temperatures, absorp- 
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I I I I 

0 0.2 0.4 0.6 0.8 1.0 

E, O K / = ,  h t l n g  Ak 

FIG. 2. Influence of temperature dependence of the axial dispersion coefficient 
Do on plot of second moment pcze versus heating rate E. 

tion is reduced because of the temperature dependence of the equilibrium 
partition coefficient. However, resolution is not increased for larger E 

despite the band sharpening, because spacing between first moments is 
decreased. 

To illustrate this behavior, we plot resolution (7), defined in terms of 
moments as 

versus heating rate in Fig. 3. The resolution is entirely satisfactory even at 
E = 1.0, and a large reduction in retention time is achieved. These results 
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FIG. 3. Effect of heating rate E on resolution of components A and B. 

are obviously conditional on the large difference in AH for Components 
A and B that was chosen for this calculation. 

CONCLUSION 

The key to this paper's development of a theory for band broadening 
and skewness is the realization of the differential expressions for the 
moments, Eqs. (4), (8), and (12). The integration of the first moment 
reproduces well-known results. The second moment shows how pulse 
sharpening occurs for larger heating rates. The decrease in the third 
moment shows how the peak becomes more symmetric as it narrows. 
Using the first and second moment results, we are able to demonstrate how 
resolution decreases with increased heating rate, although retention time 
is reduced. The temperature dependence of the axial dispersion coefficient 
can be included and is a secondary effect. 
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